

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

Позначення ПРВ-217-8645.22-112к.23

> Стор. 1 Всього 16

Дата 21.09.2023

ЗАТВЕРДЖУЮ

В.о. завідувача відділу будівельної фізики та

енергоефективності ДП КДІБК

K.T.H.

«ДЕРЖАВНИЙ НАУКОВО-ДОСЛІДІ

ОЛЕНКО HCTUTY BY BEILDING

КОНСТРУКЦІЙ»

9291 82495431

21 вересн

ПРОТОКОЛ № 112к/23

кваліфікаційних випробувань з визначення терміну ефективної експлуатації до 50 умовних років теплоізоляційних матеріалів з мінеральної вати марки «ТЕХНОФАС ОПТИМА» виробництва ТОВ «Завод теплоізоляційних матеріалів «ТЕХНО»

Виконавець: Відділ будівельної фізики та енергоефективності ДП НДІБК, атестат про акредитацію № 20167 від 28.05.2021р., виданий Національним агентством з акредитації України (м. Київ-37, вул. Преображенська, 5/2, ДП НДІБК)

Замовник: ТОВ «Завод теплоізоляційних матеріалів «ТЕХНО» вул. Різдвяна, буд. 300, м. Черкаси, 18018

Договір № 8645 від «29» грудня 2022 р.

Київ 2023

Державне підприємство "Державний науково-дослідний інститут будівельних конструкцій" (ДП НДІБК) 03037, м. Київ-37, вул. Преображенська, 5/2

20167 ДСТУ ISO/IEC 17025

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа ПРОТОКОЛ ВИПРОБУВАНЬ	Позначення ПРВ-217-8645.22-112к.23		
	Стор. 2 Всього 16	Дата 21.09.2023	

- 1. Підстави для проведення випробувань: № 8645 від «29» грудня 2022 р.
- 2. Нормативні посилання: перелік нормативних документів, на які є посилання у цьому протоколі, наведено у таблиці 1.

Таблиця 1 – Перелік нормативних документів

Позначення нормативних документів	Назви нормативних документів
ДБН В.2.6-31:2021	Теплова ізоляція та енергоефективність будівель
ТУ У В 2.7-23.9- 35492904-001:2013 на заміну ТУ У В 2.7-26.8- 35492904-001:2008	Плити мінераловатні теплоізоляційні «ТЕХНО». Технічні умови
ТУ У В 2.7-23.9- 35492904-005:2015	Плити мінераловатні теплоізоляційні на синтетичному зв'язуючому «ТЕХНО». Технічні умови
ДСТУ Б В.2.7-167:2008 (EN 13162:2001, NEQ).	Вироби теплоізоляційні з мінеральної вати на синтетичному зв'язуючому. Загальні технічні умови
ДСТУ Б В.2.7-182:2009	Будівельні матеріали. Методи визначення терміну ефективної експлуатації та теплопровідності будівельних ізоляційних матеріалів у розрахункових та стандартних умовах
ДСТУ Б В.2.7-38-95 (ГОСТ 17177-94)	Будівельні матеріали. Матеріали і вироби будівельні теплоізоляційні. Методи випробувань
ДСТУ 4179-2003 (ГОСТ 7502-98, МОD)	Рулетки вимірювальні металеві. Технічні умови. Зі зміною № 1
ДСТУ Б В.2.7-105-2000 (ГОСТ 7076-99)	Матеріали і вироби будівельні. Метод визначення теплопровідності і термічного опору при стаціонарному тепловому режимі.
ДСТУ EN 13190:2018 (EN 13190:2001, IDT)	Термометри зі шкалою
ДСТУ EN 45501:2007 (EN 45501:1992, IDT)	Прилади неавтоматичні зважувальні. Загальні технічні вимоги та методи випробувань.
СОУ ДП НДІБК В.2.7- 02495431-004:2020	Метод визначення терміну ефективної експлуатації теплоізоляційних матеріалів до 50 умовних років

- 3. Мета випробувань: визначення терміну ефективної експлуатації (до 50 умовних років) теплоізоляційних матеріалів з мінеральної вати марки «ТЕХНОФАС ОПТИМА» виробництва ТОВ «Завод теплоізоляційних матеріалів «ТЕХНО».
- 4. Випробування проводились 07.04.2023 р. 01.09.2023 р. згідно з вимогами ДСТУ Б В.2.7-182:2009 та СОУ ДП НДІБК В.2.7-02495431-004:2020 за адресою: м. Київ, вул. М. Кривоноса, 26.

Державне підприємство "Державний науково-дослідний інститут будівельних конструкцій" (ДП НДІБК) 03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

20167

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

Позначення	
ПРВ-217-8645.	22-112к.23
Стор. 3	Дата
Всього 16	21.09.2023

- 5. Зразки надані: ТОВ «Завод теплоізоляційних матеріалів «ТЕХНО». Акт відбору зразків від 06.04.2023 р. Підготовка зразків до випробування проводилась з 07.04.2023 по 14.04.2023 р.
 - 6. Зразки отримані 06.04.2023 р. та зареєстровані у журналі під № 17/23.
- 7. Результати візуального обстеження перед випробуваннями: якісний зовнішній вид, без дефектів та механічних пошкоджень, допускається на випробування.
- 8. Тип та основні характеристики обладнання: перелік обладнання наведено у таблиці 2.

Таблиця 2 – Тип і характеристики випробувального обладнання та засобів вимірювальної техніки

Назва випробувального обладнання та засобів	Заводський	Дата калібрування		
вимірювальної техніки	номер	Ост.	Наступн.	Номер свідоцтва
Кліматична камера КТК- 3000	236103	09.2023	09.2024	KT02050507923
Установка для визначення теплопровідності будівельних матеріалів ІТ-7С згідно з ДСТУ Б В.2.7-105-2000, точність 3%	04	02.2023	02.2024	UA01 №323
Ваги лабораторні Axis	2024	01.2023	01.2024	UA/35/230127/1875
Вага ТВЕ-1,5-0,001-а	51248	04.2023	04.2024	C429/04-2023
Машина випробувальна MPM-5T	6087	03.2023	03.2024	UA/34/230303/000434
Психрометр МВ-4М 3 термометрами ТМ-6 згідно з ГОСТ 112-78, похибка вимірювань ±1%	26431	09.2023	09.2024	UA/24/230911/3173
Термометр скляний ТН-8М (-80+60°С)	172	09.2023	09.2024	KT01059724222
Барометр-анероїд БАММ-1	101518	02.2023	02.2024	UA/39/230214/0220
Рулетка вимірювальна металева	1	02.2023	02.2024	UA/23/230213/000320
Штангенциркуль ШЩ-1	078538	09.2022	09.2023	UA/23/220901/001430
Камера теплової обробки HPS-222	3585060	09.2023	09.2024	KT02050307923

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

Позначення ПРВ-217-8645.22-112к.23

> Стор. 4 Всього 16

Дата 21.09.2023

9. Характеристика зразків та особливості поведінки під час випробувань.

Зразки № 17/23 (17/23-1÷17/23-78) — зразки теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» з мінеральної вати виробництва ТОВ «Завод теплоізоляційних матеріалів «ТЕХНО» розміром 300х300х50 мм та густиною 120,4±0,6 кг/м³ в кількості 78 шт.

Загальний вигляд зразків № 17/23 показано на рис. 1.

Рисунок 1 – Зразки № 17/23 теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА»

Загальний вигляд випробувальної установки наведено на рис. 2.

Рисунок 2 — Установка для визначення теплопровідності згідно з ДСТУ Б В.2.7-105-2000 (ГОСТ 7076-99)

10. Умови проведення випробувань:

$$t_{\mbox{\tiny B}} = + (22 \pm 1)\, {}^{\rm o}{\rm C}, \, \phi = (55 \pm 5)$$
 %, P = 98,0-101,5 кПа.

де $t_{\text{в}}$ – температура внутрішнього повітря в приміщенні, ϕ – вологість повітря в приміщенні, P – атмосферний тиск повітря.

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

ПРВ-217-8645.22-112к.23

Стор. 5 Всього 16 Дата 21.09.2023

10.1 Визначення терміну ефективної експлуатації матеріалів до 50 умовних років проводилося у відповідності з вимогами ДСТУ Б В.2.7-182 та СОУ ДП НДІБК В.2.7-02495431-004:2020.

Зразки, що підлягають випробуванням, зволожені до вологості $[(w_E+5)\pm2]\%$ і запаяні в полієтиленові пакети, розміщують рівномірно по всьому робочому об'єму кліматичної камери із проміжками між ними так, щоб забезпечити рух повітряних потоків і виключити утворення застійних зон.

Зразки піддають циклічному температурному впливу заморожування-відтаваннянагрівання: $t_3 = -22 \pm 1$ °C, $\tau_3 = 3$ год.; $t_B = +20 \pm 2$ °C, $\tau_B = 4$ год.; $t_H = +60 \pm 1$ °C, $\tau_H = 16$ год.,

де: t_3 , t_B , t_H — температури заморожування, відтавання та нагрівання зразків відповідно;

 τ_3 , τ_B , τ_H — тривалість заморожування, відтавання та нагрівання зразків.

Один цикл випробувань складається із заморожування-відтавання-нагрівання.

Через кожних 10-ть циклів випробувань проводився відбір зразків з подальшим визначенням їх показників теплопровідності в стандартних умовах та фіксуванням характеру зміни зовнішнього вигляду зразків.

За результатами випробувань будується графік залежності теплопровідності від кількості циклів $\lambda(z)$.

Чисельне значення показника ресурсу визначається за формулою:

$$r = bx^* + \varepsilon \tag{1}$$

де, х* – найбільше значення кількості циклів, що відповідає лінійній ділянці зміни експлуатаційного теплофізичного параметра;

b – тангенс кута нахилу залежності $\lambda(z)$;

 ϵ – довірча межа випадкової похибки результатів вимірювань для рівня забезпеченості 95%.

Термін ефективної експлуатації для теплоізоляційних матеріалів приймається не менше 50 умовних років, якщо після 100 циклів виконується умова:

$$\frac{r_{\lambda}}{\lambda_0} \cdot k_Z \le 0.2 \tag{2}$$

$$\left| \frac{r_i}{\sigma_0^{10}} \cdot k_z \right| \le 0.15 \tag{3}$$

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

Позначення	
ПРВ-217-8645.2	22-112к.23
Стор. 6	Дата
Behoro 16	21.09.2023

$$\left| \frac{r_i}{\sigma_p} \cdot k_z \right| \le 0,15 \tag{4}$$

де, k_z — масштабний коефіцієнт, що враховує відповідність експериментальних циклів тепловологісним умовам експлуатації матеріалу в конструкції. $k_z = 5$ для конструкцій зовнішніх стін із фасадною теплоізоляцією та для конструкцій із захисним опоряджувальним шаром, що розташовані між теплоізоляційним шаром та зовнішнім повітрям;

 λ_0 – теплопровідність в стандартних умовах, Bт/(м·K), при t_c = +25 ±1°C;

 σ_0^{10} – початкова міцність на стиск при 10% лінійній деформації, кПа;

 $\sigma_{\rm p}$ — початкова міцність на при розтягу у напрямку, перпендикулярному до площини виробу, кПа;

Після циклів, що імітують вплив випадкових кліматичних факторів на експлуатаційний стан теплоізоляційного матеріалу в складі огороджувальних конструкцій у випадку ймовірних відмов конструкцій, виконується умова:

$$k \le 0.1 \tag{5}$$

Коефіцієнт урахування впливу кліматичної деструкції матеріалів в процесі експлуатації на їх теплопровідність, визначається за формулою:

$$k_k = 1 + \frac{r_\lambda}{\lambda_0} \cdot k_Z \tag{6}$$

Кліматична камера для проведення циклічних кліматичних впливів наведена на рис. 3.

Рисунок 3 – Кліматичні камери для проведення циклічних кліматичних впливів

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

Позначення ПРВ-217-8645.22-112к.23

> Стор. 7 Всього 16

Дата 21.09.2023

10.2 Визначення розрахункових значень теплопровідності матеріалів

Розрахункові значення теплопровідності матеріалів визначалися по формулі:

$$\lambda_{A} = \lambda_{10}(w_{A}) \cdot k_{K} \cdot k_{M} + \varepsilon, \tag{7}$$

$$\underline{\lambda}_{\rm B} = \lambda_{10}(\mathbf{w}_{\rm B}) \cdot k_{\rm K} \cdot k_{\rm M} + \varepsilon, \tag{8}$$

де: λ_A – теплопровідність матеріалу в розрахункових умовах A, Вт/(м⋅К);

 $\lambda_{10}(w_A)$ — експериментальне значення теплопровідності матеріалу при температурі $+10^{\circ}$ С та при вологості w_A , $B_T/(M\cdot K)$;

 $\lambda_{\rm E}$ – теплопровідність матеріалу в розрахункових умовах Б, Вт/(м·К);

 $\lambda_{10}(w_B)$ — експериментальне значення теплопровідності матеріалу при температурі $+10^{\circ}$ С та при вологості w_B , $Bt/(M\cdot K)$;

 $k_{\rm K}$ — коефіцієнт урахування впливу кліматичної деструкції матеріалів в процесі експлуатації;

 $k_{\rm M}$ — коефіцієнт урахування впливу якості будівельно-монтажних робіт на зміну теплопровідності матеріалу. Для матеріалів з міцністю на стиск 0,035 МПа та більше при 10 %-деформації приймається 1.

11 Результати випробувань зразків будівельного теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» виробництва ТОВ «Завод теплоізоляційних матеріалів «ТЕХНО».

Визначення терміну ефективної експлуатації проводився на основі оцінки наступних показників: — геометричні характеристики; — теплопровідність; — міцність на стиск при 10 % -й лінійній деформації.

Загальний вигляд зразків № 17/23, які піддають циклічному температурному впливу, наведено на рис. 4.

11.1 За результатами візуального огляду дослідних фрагментів після проведення 100 циклів кліматичних впливів заморожування— відтавання— нагрівання встановлено, що зовнішній вигляд фрагментів будівельного теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» не змінюється— зміна геометричних розмірів зразків знаходиться в межах допустимих значень, візуально не встановлено зміни кольору та структури матеріалу.

Графік залежності теплопровідності виробів від кількості циклів наведений на рис. 5.

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

Іозначення

ПРВ-217-8645.22-112к.23

Стор. 8 Всього 16 Дата 21.09.2023

Рисунок 4 – Дослідні зразки, які піддають циклічному температурному впливу

11.2 Залежність теплопровідності фрагментів будівельного теплоізоляційного матеріалу «ТЕХНОФАС ОПТИМА» від кількості циклів заморожування—відтавання—нагрівання визначається за формулою:

$$\lambda(z) = 0.0383 + z \cdot 5 \cdot 10^{-6} \tag{9}$$

Показник ресурсу, що визначається за формулою (1), становить r = 0,0005.

Виконується перевірка виконання умови за формулою (2):

$$\frac{r}{\lambda_0} \cdot k_z = \frac{0,0005}{0,0382} \cdot 5 = 0,065 \le 0,2 \tag{10}$$

Коефіцієнт урахування впливу кліматичної деструкції матеріалів в процесі експлуатації на їх теплопровідність, визначається за формулою (6):

$$k_z = 1 + \left(\frac{0,0005}{0,0382}\right) \cdot 5 = 1,065 \tag{11}$$

Отже, умова за формулою (2) виконується.

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

ПРВ-217-8645.22-112к.23

Стор. 9 Всього 16 Дата 21.09.**202**3

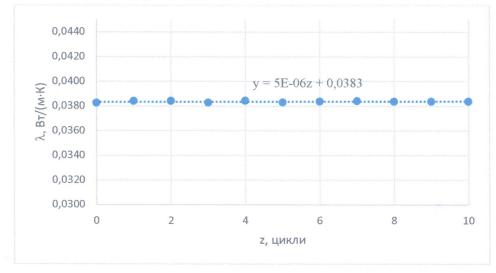


Рисунок 5 – Залежність теплопровідності від циклічних впливів

11.3 На рис. 6 наведено фотографію процесу проведення випробування міцності на стиск при 10 % деформації зразків теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА».

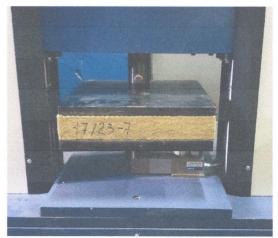


Рисунок 6 – Проведення випробування міцності на стиск при 10% деформації зразків № 17/23 теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА»

Міцність на стиск при 10% деформації σ_{10} , кПа, обчислюють за формулою:

$$\sigma_{10} = 10^3 \cdot \frac{F_{10}}{A_0},\tag{12}$$

де: F_{10} – навантаження при 10% деформації стиску, H; A_0 – площа зразка, мм².

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

	Diagnost of Albertania Telephological Telephologica			
Рівень докуме	ента	Позначення		
ПРОТОКОЛ ВИПРОБУВАНЬ		ПРВ-217-864	5.22-112к.23	
		Стор. 10	Дата	
		Всього 16	21.09.2023	

В таблиці 3 наведено результати випробування міцності на стиск при 10 % деформації зразків теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» перед початком випробування (нульовий цикл) та через 60, 100 циклів кліматичних впливів.

Таблиця 3 – Міцність на стиск при 10% деформації σ_{10} , кПа зразків теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА»

Номер	Номер зразка	Значення σ_{10} ,	Середнє значення
циклу	aromop opwore	кПа	σ_{10} , кПа
	17/23-6	51,63	
0	17/23-7	48,49	47,77
	17/23-8	43,20	
	17/23-15	46,08	
60	17/23-16	45,56	46,15
	17/23-17	46,82	
7	17/23-21	41,53	
100	17/23-32	40,97	42,04
	17/23-33	43,62	

Залежність міцності на стиск при 10% деформації зразків теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» від кількості циклів заморожування—відтавання—нагрівання визначалась за формулою:

$$\sigma^{10}(z) = -0.0549z + 48.253 \tag{13}$$

Показник ресурсу, що визначається за формулою (1), становить r = 0,505. Виконується перевірка виконання умови за формулою (3):

$$\frac{0,505}{47,77} \cdot 5 = 0,053 \le 0,15 \tag{14}$$

Залежність міцності на стиск при 10% деформації від циклічних впливів наведено на рис.7.

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

Позначення ПРВ-217-8645.22-112к.23

> Стор. 11 Всього 16

Дата 21.09.2023

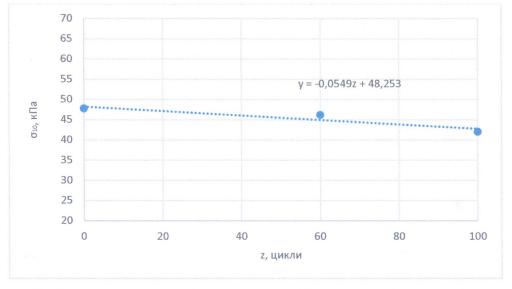


Рисунок 7 – Залежність міцності на стиск при 10% деформації від циклічних впливів зразків № 17/23 теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА»

11.4 На рис. 8 наведено фотографію процесу проведення випробування міцності при розтягу у напрямку, перпендикулярному до площини виробу зразків теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА».

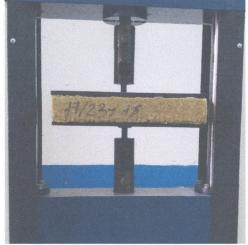


Рисунок 8 – Проведення випробування міцності при розтягу у напрямку, перпендикулярному до площини виробу зразків № 17/23 теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА»

Міцність при розтягу у напрямку, перпендикулярному до площини виробу $\sigma_{\rm p}$, кПа, обчислюють за формулою:

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень	документа

ПРОТОКОЛ ВИПРОБУВАНЬ

Позначення ПРВ-217-8645.22-112к.23

> Стор. 12 Всього 16

Дата 21.09.2023

$$\sigma_{\rm p} = 10^3 \cdot \frac{F_{\rm p}}{A_0},\tag{15}$$

де: F_p – руйнівне зусилля, H; A_0 –площа зразка, мм².

В таблиці 4 наведено результати випробування при розтягу у напрямку, перпендикулярному до площини виробу зразків теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» перед початком випробування (нульовий цикл) та через 60, 100 циклів кліматичних впливів.

Таблиця 4 – Міцність при розтягу у напрямку, перпендикулярному до площини виробу, $\sigma_{\rm p}$, кПа зразків теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА»

Номер циклу	Номер зразка	Значення $\sigma_{\rm p}$, кПа	Середнє значення $\sigma_{\rm p}$, кПа
1	17/23-09	16,1	
0	17/23-10	15,1	15,5
- 42	17/23-11	15,5	
	17/23-18	15,4	
60	17/23-19	15,3	15,3
Y	17/23-20	15,2	A A
	17/23-29	15,1	
100	17/23-30	15,0	14,7
	17/23-31	14,1	

Залежність міцності при розтягу у напрямку, перпендикулярному до площини виробу, зразків теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» від кількості циклів заморожування—відтавання—нагрівання визначалась за формулою:

$$\sigma^{10}(z) = -0,0079z + 15,617 \tag{16}$$

Показник ресурсу, що визначається за формулою (1), становить r = 0.077.

Виконується перевірка виконання умови за формулою (4):

$$\frac{0,077}{15.5} \cdot 5 = 0,025 \le 0,15 \tag{17}$$

Залежність міцності на стиск при 10% деформації від циклічних впливів наведено на рис.9.

Державне підприємство "Державний науково-дослідний інститут будівельних конструкцій" (ДП НДІБК) 03037, м. Київ-37, вул. Преображенська, 5/2

Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

Позначення ПРВ-217-8645.22-112к.23

> Стор. 13 Всього 16

Дата 21.09.2023

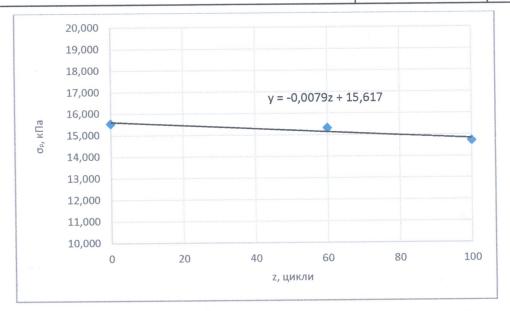


Рисунок 9 – Залежність міцності при розтягу у напрямку, перпендикулярному до площини виробу, від циклічних впливів зразків № 17/23 теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА»

11.5 Стійкість експлуатаційних показників теплоізоляційного матеріалу «ТЕХНОФАС ОПТИМА» до впливу кліматичної вологи та впливу сонячного опромінення. На рис. 10 зображено дослідні зразки № 17/23 під час опромінення.

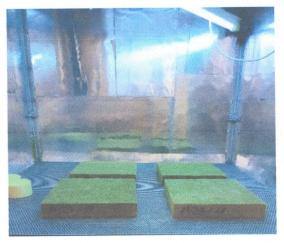


Рисунок 10— Загальний вигляд дослідних зразків № 17/23 теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» під час опромінення

Після 60 циклів зразки, що піддаються випробуванням, ділять на дві партії (не менше ніж по 5 штук в кожній) зволожують на протязі 28 діб (рис. 11), надалі їх поділяють та висушують в двох температурних режимах: а) $+(20\pm1)$ °C; б) $-(5\pm1)$ °C та піддають ультрафіолетовому

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

ПРВ-217-8645.22-112к.23

Стор. 14 Всього 16 Дата 21.09.2023

випромінюванню упродовж 5 діб тривалістю по 8 год та визначається для цих зразків λ_0 – теплопровідність в стандартних умовах, $B_T/(M \cdot K)$, при $t_c = +25 \pm 1^{\circ}C$.

Рисунок 11 – Зволоження дослідних зразків № 17/23 теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА»

Результати випробувань зразків № 17/23 теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» на стійкість до впливу кліматичної вологи та сонячного опромінення наведено в таблиці 5 Після опромінення спостерігалась незначна зміна кольору

Після 60 циклів:

Для партії, що висушувалась в температурному режимі + (20 ± 1) °C

 $\lambda_{60} = 0.0389 \text{ BT/(M·K)}.$

Для партії, що висушувалась в температурному режимі - (5 ± 1) °C

 $\lambda_{60} = 0.0408 \text{ BT/(M} \cdot \text{K}).$

Таблиця 5 – Результати випробувань зразків № 17/23 теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» на стійкість до впливу кліматичної вологи та сонячного опромінення

Номер	Номер	Темпе-	Середня	Середня	Найбіль-	Нормати	Відпо-
циклу	зразка	ратура	теплопро-	теплопро	ше	вна	відність
		сушки,	відність в	відність	значення	характе-	
		°C	початково-	після	критерію	ристика,	de programa.
			му стані	кліматич-		не	
				них		більше	
				впливів			
60	17/23	+20	0,0382	0,0389	0,018	0.1	+
00	17/23	-5	0,0382	0,0408	0,068	0,1	+

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Рівень документа

ПРОТОКОЛ ВИПРОБУВАНЬ

Позначення ПРВ-217-8645.22-112к.23

> Стор. 15 Всього 16

Дата 21.09.2023

Отже, умови (2-5) виконуються, тобто термін ефективної експлуатації виробів становить не менше ніж 50 років.

Узагальнені дані за результатами випробувань терміну ефективної експлуатації зразків будівельного теплоізоляційного матеріалу марки «ТЕХНОФАС ОПТИМА» наведені в таблиці 6.

Таблиця 6 – Результати випробувань терміну ефективної експлуатації (до 50 умовних років) матеріалу

Матеріал	$\frac{r}{\lambda_0}k_z \le 0, 2$	$\frac{r}{\sigma_{_{\scriptscriptstyle{0}}}^{_{10}}}k_{_{Z}}\leq0,15$	$\left \frac{r_i}{\sigma_{\rm p}} \cdot k_z \right \le 0.15$	$k \le 0,1$	Термін ефективної експлуатації
«ТЕХНОФАС ОПТИМА»	0,065≤0,2	0,053≤0,15	0,025≤0,15	+	не менше ніж 50 років

11.5 Визначення теплопровідності в розрахункових умовах експлуатації

Визначення теплопровідності здійснювалося у зволоженому стані при температурі +10 °C. За результатами випробувань встановлюється $\lambda_{10}(w_A)$, $\lambda_{10}(w_B)$ та відповідні похибки вимірювань.

Для теплоізоляційного матеріалу «ТЕХНОФАС ОПТИМА» при сорбційній вологості:

$$w_A = 0.5$$
 %, встановлено – $\lambda_{10}(w_A) = 0.0370 \text{ Br/(M·K)}$, $\epsilon = 0.0002 \text{ Br/(M·K)}$;

$$w_{\rm B}=1$$
 %, встановлено $-\lambda_{10}(w_{\rm B})=0.0388~{\rm BT/(M\cdot K)},~~\epsilon=0.0003~{\rm BT/(M\cdot K)}.$

Тоді, за формулами (7), (8), з урахуванням впливу кліматичної деструкції матеріалу (k_{κ}) та якості будівельно-монтажних робіт ($k_{\rm M}$) на зміну теплопровідності матеріалу, визначається теплопровідність у умовах експлуатації A та E.

$$\lambda_{\rm A} = \lambda_{10}(w_{\rm A}) \cdot k_{\rm K} \cdot k_{\rm M} + \epsilon = 0,0370 \cdot 1,065 \cdot 1 + 0,0002 = 0,040 \, \text{BT/(M·K)};$$

 $\lambda_{\rm B} = \lambda_{10}(w_{\rm B}) \cdot k_{\rm K} \cdot k_{\rm M} + \epsilon = 0,0388 \cdot 1,065 \cdot 1 + 0,0003 = 0,042 \, \text{BT/(M·K)}.$

Результати визначення теплопровідності в розрахункових умовах експлуатації наведені в таблиці 7

03037, м. Київ-37, вул. Преображенська, 5/2 Відділ будівельної фізики та енергоефективності

Таблиця 7 – Результати визначення теплопровідності в розрахункових умовах експлуатації

Матеріал	Теплопровідність в умовах експлуатації, Вт/(м·К)		
	A	Б	
«ТЕХНОФАС ОПТИМА»	0,040	0,042	

12. Висновки.

Термін ефективної експлуатації плит теплоізоляційних з мінеральної вати марки «ТЕХНОФАС ОПТИМА» виробництва ТОВ «Завод теплоізоляційних матеріалів «ТЕХНО» становить не менше ніж 50 умовних років.

Старший науковий співробітник

Андрій ПОСТОЛЕНКО

Молодший науковий співробітник

Дмитро БІДА

Протокол випробувань стосується тільки зразків, підданих випробуванням. Повне або часткове передрукування протоколу без дозволу випробувальної лабораторії не допускається. Протокол випробувань видано в 4 примірниках